2024-08-26
【學術亮點-頂級會議論文】大型語言模型錯誤學習命令提示:以原民語翻譯為例
Font Size
Small
Middle
Large
【學術亮點-頂級會議論文】大型語言模型錯誤學習命令提示:以原民語翻譯為例
AI core Technology: Advanced Research and Resource Integration Platform or AI Technology【Department of Computer Science and Engineering / Yao-Chung Fan / Associate Professor】
核心技術:AI核心技術之進階研究與資源整合平台【資訊工程學系范耀中副教授】
上架日期:2024/8/15
AI core Technology: Advanced Research and Resource Integration Platform or AI Technology【Department of Computer Science and Engineering / Yao-Chung Fan / Associate Professor】
核心技術:AI核心技術之進階研究與資源整合平台【資訊工程學系范耀中副教授】
論文篇名 | 英文:Learning-From-Mistakes Prompting for Indigenous Language Translation 中文:大型語言模型錯誤學習命令提示:以原民語翻譯為例 |
期刊名稱 | The 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024) (指標清單期刊) |
發表年份, 卷數, 起迄頁數 | In Proceedings of the ACL Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024@ACL), pages 146–158, Bangkok, Thailand from August 15th, 2024. Association for Computational Linguistics. |
作者 | You Cheng Liao, Chen-Jui Yu, Chi-Yi Lin, He-Feng Yun, Yen-Hsiang Wang, Hsiao-Min Li, Yao-Chung Fan(范耀中)∗ |
DOI | https://aclanthology.org/2024.loresmt-1.15 |
中文摘要 | 本文利用大型語言模型(LLM),提出了改進極低資源原住民語言翻譯的技術。我們的方法基於以下幾點:(1) 包含有限數量平行翻譯範例的資料庫,(2) GPT-3.5等LLM的內在能力,以及 (3) 字詞級翻譯詞典。在這樣的環境中,我們利用LLM的潛力和情境學習技術,將LLM用作極低資源語言的通用翻譯器。我們的方法論著重於將LLM用作特定語言對的語言編譯器,假設它們能夠內化句法結構以促進準確的翻譯。我們引入了三種技術:使用檢索提示上下文的KNN提示、思維鏈提示,以及從錯誤中學習的提示。最後一種方法特別針對過去的錯誤進行修正。評估結果顯示,即使在語料庫有限的情況下,LLM配合適當的提示策略,仍然能有效翻譯極低資源語言。 |
英文摘要 | Using large language models, this paper presents techniques to improve extremely low-resourced indigenous language translations. Our approaches are grounded in the use of (1) the presence of a datastore consisting of a limited number of parallel translation examples, (2) the inherent capabilities of LLMs like GPT-3.5, and (3) a word-level translation dictionary. We harness the potential of LLMs and in-context learning techniques in such a setting for using LLM as universal translators for extremely low-resourced languages. Our methodology hinges on utilizing LLMs as language compilers for selected language pairs, hypothesizing that they could internalize syntactic structures to facilitate accurate translation. We introduce three techniques: KNN-Prompting with Retrieved Prompting Context, Chain-of-Thought Prompting, and Learning-from-Mistakes Prompting, with the last method addressing past errors. The evaluation results suggest that, even with limited corpora, LLMs, when paired with proper prompting, can effectively translate extremely low-resource languages. |
發表成果與AI計畫研究主題相關性 | 研究大型語言模型能力,其於低資源語言In-context Learning的學習能力。並進行設計演算法進行自我修正能力之學習。論文中我們以TAIDE, Breeze, GPT3.5為研究對象,實驗結論表明大型語言模型具有強大的In-context Learning與思維練理解能力。而我們所預計開發之農業語言模型,屬於低資源設定,相關知識之理解,將有助於進一步提升我們所設定之農業模型開發。 |