2025-09-26

【學術亮點】機器學習輔助優化設計增強釩摻雜鎳鈷層狀雙氫氧化物的析氧反應

Font Size
Small
Middle
Large
【學術亮點】機器學習輔助優化設計增強釩摻雜鎳鈷層狀雙氫氧化物的析氧反應
Intelligent Husbandry: AI Green Energy Management and Circular Use of Sensing PlatformDepartment of Chemical Engineering /Chih-Ming Chen/ Professor
智慧農牧場:AI綠能管理與循環利用之感測平台【化工系陳志銘教授】
論文篇名 英文:Machine learning-assisted optimization design for enhanced oxygen evolution reaction based on vanadium-doped nickel–cobalt layered double hydroxides
中文:機器學習輔助優化設計增強釩摻雜鎳鈷層狀雙氫氧化物的析氧反應
期刊名稱 Journal of Materials Chemistry A
發表年份, 卷數, 起迄頁數 2025, 13, 28907-28919
作者 Chandrasekaran Pitchai, Ting-Yu Lo, Hou-Chien Chang, Hung-Chung Li(李宏中)*, Ming-Der Yang(楊明德)*, Chih-Ming Chen(陳志銘)
DOI 10.1039/d5ta03069b
中文摘要 隨著對永續能源需求的日益增加,高效能水分解的研究被受廣泛關注,特別是氧氣析出反應(OER)電催化劑的開發,然而其反應動力學遲緩仍是一大阻礙。由於多成分催化劑的組成複雜,以及電解質與溫度的影響,OER 電催化劑的優化過程依舊是一項重大挑戰。在本研究中,利用機器學習(ML)輔助優化設計,提升摻雜釩的鎳–鈷層狀雙氫氧化物(NiCoV LDHs)催化劑的 OER 表現。在 ML 框架中,透過實驗數據系統性地訓練多項式迴歸模型,成功揭示了目標特徵(過電位)與輸入特徵(催化劑組成、電解質濃度、反應溫度)之間的關聯性,並取得了較高的決定係數(R² = 0.842)。根據 ML 演算法所預測的最佳化輸入特徵,實驗上獲得了優異的 196 mV 過電位,相較於原始訓練數據集中最佳催化性能(238 mV)降低了 21%。結構與電化學表徵進一步確認最佳化電催化劑具有明確的層狀形貌與高效的電荷轉移動力學能力。本研究成果展現了將 ML 演算法與實驗合成相結合,進行高效能、低成本 OER 電催化劑理性設計與優化的重要里程碑。
英文摘要 The increasing demand for sustainable energy has driven significant research into efficient water splitting, particularly the development of electrocatalysts for the oxygen evolution reaction (OER) which is limited by sluggish kinetics. Optimization of the OER process remains, however, a big challenge due to the compositional complexity of multicomponent catalysts and the influences of electrolyte and temperature. In this study, machine learning (ML)-assisted optimization design is performed to enhance the OER performance using vanadium-doped nickel–cobalt layered double hydroxides (NiCoV LDHs) as the catalyst. In the ML framework, a polynomial regression model is systematically trained by experimental datasets to successfully elucidate the correlation between the target feature (overpotential) and the input features (catalyst composition, electrolyte concentration, and reaction temperature) with a high coefficient of determination (R2) of 0.842. Based on the optimized input features predicted by the ML algorithm, a superior overpotential of 196 mV is experimentally obtained which is reduced by 21% compared to the best catalytic performance (238 mV) in the original training datasets. Structural and electrochemical characterizations confirm a well-defined layered morphology and efficient charge transfer dynamics for the optimized electrocatalyst. Our results stand as a significant milestone for integrating an ML algorithm with experimental synthesis for the rational design and optimization of high performance, cost-effective OER electrocatalysts.
發表成果與AI計畫研究主題相關性 本研究結合機器學習與電催化水分解領域,利用機器學習方法針對電催化劑的製程參數與反應環境進行優化,以降低因反覆實驗所造成的時間成本。機器學習作為人工智慧(AI)的一個重要分支,能使系統透過數據學習自主執行任務,而無需人工逐一設定規則,這與本研究採用機器學習的目的高度契合。此外,化學儲能(如電解水制氫)儲能方式,相較於電化學儲能裝置(如電池與電容器)具備極高的能量密度,同時實現零碳排放,因此本研究之電催化劑,最終期望應用在農業的能源儲存系統,為推動全球能源體系邁向綠色、清潔與低碳轉型提供關鍵契機。因此,本研究與計畫主題具備密切的相關性。
上架日期:2025/06/25
 
Contact Us