2025-09-26
【學術亮點】使用混合深度神經網路和機器學習增強路面馬歇爾穩定性
字體大小
小
中
大
Intelligent Cultivation: Crop digital twin for growth adversity index and disaster damage assessment【Department of Civil Engineering / Ming-Der Yang / Tenured Distinguished Professor】
智慧栽培:數位分身作物生長逆境指標與災損監測【土木工程學系楊明德終身特聘教授】
上架日期2025-08-12
智慧栽培:數位分身作物生長逆境指標與災損監測【土木工程學系楊明德終身特聘教授】
論文篇名 | 英文:Enhancing Marshall stability of asphalt concrete using a hybrid deep neural network and ensemble learning 中文:使用混合深度神經網路和機器學習增強路面馬歇爾穩定性 |
期刊名稱 | Case Studies in Construction Materials |
發表年份, 卷數, 起迄頁數 | 2025, 23, no. e05162 |
作者 | Henok Desalegn Shikur; Yang, Ming-Der (楊明德)*; Yared Bitew Kebede |
DOI | 10.1016/j.cscm.2025.e05162 |
中文摘要 | 準確預測馬歇爾穩定性 (MS) 對於瀝青混凝土混合料設計和性能評估至關重要,但傳統的實驗室方法是資源密集型的。本研究提出並評估了混合機器學習模型,特別是將深度神經網路(DNN)基礎學習器與各種集成技術(隨機森林、XGBoost、LightGBM、CatBoost、AdaBoost)透過堆疊整合,以增強MS預測的準確性和效率。利用包含瀝青混合料黏合劑、骨料和體積特性的綜合資料集,使用脊迴歸作為元學習器開發了五種不同的混合模型。使用平均絕對誤差 (MAE)、均方根誤差 (RMSE)、決定係數 (R²)、平均絕對百分比誤差 (MAPE) 和均方根誤差變異係數 (CVRMSE) 對模型性能進行了嚴格評估。此外,SHapley 加法解釋 (SHAP) 分析用於解釋特徵重要性和模型預測。結果表明,所提出的混合堆疊模型通常優於獨立的基礎學習器。值得注意的是,DNN-CatBoost 混合體在測試集上表現出卓越的預測性能,產生最低的誤差指標(MAE=0.67 kN,RMSE=0.83 kN)和最高的 R²(0.86)。SHAP 分析確定骨料體積比重 (Gsb) 是馬歇爾穩定性的主要預測因子(影響 31.13%),其次是 VMA、Pse 和 Abs。研究結果表明,混合 DNN-CatBoost 模型為預測瀝青混凝土馬歇爾穩定性提供了一種高度準確且強大的數據驅動工具,在簡化混合料設計和減少路面工程中的實驗室測試工作方面具有巨大潛力。 |
英文摘要 | Accurate prediction of Marshall Stability (MS) is vital for asphalt concrete mix design and performance evaluation, yet traditional laboratory methods are resource-intensive. This study proposes and evaluates hybrid machine learning models, specifically integrating a deep neural network (DNN) base learner with various ensemble techniques (Random Forest, XGBoost, LightGBM, CatBoost, AdaBoost) through stacking, to enhance the accuracy and efficiency of MS prediction. Leveraging a comprehensive dataset encompassing binder, aggregate, and volumetric properties of asphalt mixtures, five distinct hybrid models were developed using Ridge regression as the meta-learner. Model performance was rigorously assessed using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of Determination (R²), Mean Absolute Percentage Error (MAPE), and Coefficient of Variation of the Root Mean Square Error (CVRMSE) on both training and unseen testing datasets. Furthermore, SHapley Additive exPlanations (SHAP) analysis was employed to interpret feature importance and model predictions. Results demonstrated that the proposed hybrid stacking models generally outperformed standalone base learners. Notably, the DNN-CatBoost hybrid exhibited superior predictive performance on the test set, yielding the lowest error metrics (MAE=0.67 kN, RMSE=0.83 kN) and the highest R² (0.86). SHAP analysis identifies Bulk Specific Gravity of Aggregate (Gsb) as the predominant predictor (31.13 % influence) of Marshall Stability, followed by VMA, Pse, and Abs. The findings indicate that the hybrid DNN-CatBoost model offers a highly accurate and robust data-driven tool for predicting asphalt concrete Marshall Stability, holding significant potential for streamlining mix design and reducing laboratory testing efforts in pavement engineering. |
發表成果與AI計畫研究主題相關性 | 目前發展的AI 模式以道路鋪面為溫度預測對象,可以應用在農地土壤分層溫度之預測。 |